arviz_stats.ci_in_rope#
- arviz_stats.ci_in_rope(data, rope, var_names=None, filter_vars=None, group='posterior', dim=None, ci_prob=None, ci_kind=None, rope_dim='rope_dim')[source]#
Compute the percentage of a credible interval that falls within a ROPE.
A region of practical equivalence (ROPE) indicates a small range of parameter values that are considered to be practically equivalent to the null value for purposes of the particular application see [1] for more details.
- Parameters:
- data
xarray.DataTree
,DataSet
orInferenceData
- rope(2,) array_like or
dict
of {hashable
(2,) array_like} orxarray.Dataset
If tuple, the lower and upper bounds of the ROPE are the same for all variables. If dict, the keys are the variable names and the values are tuples with the lower and upper bounds of the ROPE. The keys must be in var_names.
- var_names
list
ofstr
, optional Names of variables for which the ROPE should be computed. If None all variables are included.
- filter_vars: {None, “like”, “regex”}, default None
Used for var_names only. If
None
(default), interpret var_names as the real variables names. If “like”, interpret var_names as substrings of the real variables names. If “regex”, interpret var_names as regular expressions on the real variables names.- group: str
Select a group to compute the ROPE. Defaults to “posterior”.
- coords
dict
, optional Coordinates defining a subset over the selected group.
- dim
str
or sequence ofhashable
, optional Defaults to
rcParams["data.sample_dims"]
- ci_prob
float
, optional Probability for the credible interval. Defaults to
rcParams["stats.ci_prob"]
.- ci_kind{“hdi”, “eti”}, optional
Type of credible interval. Defaults to
rcParams["stats.ci_kind"]
. If kind is stats_median or all_median, ci_kind is forced to “eti”.- rope_dim
str
, default “rope_dim” Name for the dimension containing the ROPE values. Only used when rope is a
Dataset
- data
- Returns:
See also
arviz.summary
Compute summary statistics and or diagnostics.
arviz.hdi
Compute highest density interval (HDI).
arviz.eti
Compute equal tail interval (ETI).
References
[1]Kruschke. Doing Bayesian Data Analysis, Second Edition: A Tutorial with R, JAGS, and Stan. Academic Press, 2014. ISBN 978-0-12-405888-0.
Examples
Apply the same ROPE to a subset of variables:
In [1]: from arviz_base import load_arviz_data ...: from arviz_stats import ci_in_rope ...: data = load_arviz_data("centered_eight") ...: ci_in_rope(data, var_names=["mu", "tau"], rope=(-0.5, 0.5)) ...: Out[1]: <xarray.Dataset> Size: 16B Dimensions: () Data variables: mu float64 8B 4.785 tau float64 8B 0.0
Apply different ROPEs to each variable:
In [2]: ci_in_rope(data, rope={"mu": (-0.5, 0.5), "tau": (0.1, 0.2), "theta": (-0.1, 0.1)}) Out[2]: <xarray.Dataset> Size: 592B Dimensions: (school: 8) Coordinates: * school (school) <U16 512B 'Choate' 'Deerfield' ... 'Mt. Hermon' Data variables: mu float64 8B 4.785 theta (school) float64 64B 0.9038 0.6911 0.5316 ... 1.17 0.7443 1.116 tau float64 8B 0.0