arviz_stats.loo_subsample

Contents

arviz_stats.loo_subsample#

arviz_stats.loo_subsample(data, observations, pointwise=None, var_name=None, reff=None, log_weights=None, log_p=None, log_q=None, seed=315, method='lpd', thin=None, log_lik_fn=None, param_names=None, log=True)[source]#

Compute PSIS-LOO-CV using sub-sampling.

Estimates the expected log pointwise predictive density (elpd) using Pareto smoothed importance sampling leave-one-out cross-validation (PSIS-LOO-CV) with sub-sampling for large datasets. Uses either log predictive density (LPD) or point log predictive density (PLPD) approximation and applies a difference estimator based on a simple random sample without replacement.

The PSIS-LOO-CV method is described in [1], [2]. The sub-sampling method is described in [3].

Parameters:
dataxarray.DataTree or InferenceData

Input data. It should contain the posterior and the log_likelihood groups.

observationsint or ndarray

The sub-sample observations to use:

  • An integer specifying the number of observations to randomly sub-sample without replacement.

  • An array of integer indices specifying the exact observations to use.

pointwise: bool, optional

If True the pointwise predictive accuracy will be returned. Defaults to rcParams["stats.ic_pointwise"].

var_namestr, optional

The name of the variable in log_likelihood groups storing the pointwise log likelihood data to use for loo computation.

reff: float, optional

Relative MCMC efficiency, ess / n i.e. number of effective samples divided by the number of actual samples. Computed from trace by default.

log_weightsxarray.DataArray or ELPDData, optional

Smoothed log weights. Can be either:

  • A DataArray with the same shape as the log likelihood data

  • An ELPDData object from a previous arviz_stats.loo call.

Defaults to None. If not provided, it will be computed using the PSIS-LOO method.

log_pndarray or xarray.DataArray, optional

The (target) log-density evaluated at samples from the target distribution (p). If provided along with log_q, approximate posterior correction will be applied.

log_qndarray or xarray.DataArray, optional

The (proposal) log-density evaluated at samples from the proposal distribution (q). If provided along with log_p, approximate posterior correction will be applied.

seed: int, optional

Seed for random sampling.

method: str, optional

Method used for approximating the pointwise log predictive density:

  • lpd: Use standard log predictive density approximation (default)

  • plpd: Use point log predictive density approximation which requires a log_lik_fn.

thin: int, optional

Thinning factor for posterior draws. If specified, the posterior will be thinned by this factor to reduce computation time. If None (default), all posterior draws are used. This value is stored in the returned ELPDData object and will be automatically used by update_subsample.

log_lik_fncallable, optional

Function that computes the log-likelihood for observations given posterior parameters. Required when method="plpd" or when method="lpd" and custom likelihood is needed. The function signature is log_lik_fn(observations, data) where observations is a DataArray of observed data and data is a DataTree object. For method="plpd", posterior means are computed automatically and passed in the posterior group. For method="lpd", full posterior samples are passed. All other groups remain unchanged for direct access.

param_nameslist, optional

List of parameter names to extract from the posterior. If None, all parameters are used. Recommended to pass the required parameter names from the posterior group that are necessary for the log-likelihood function.

log: bool, optional

Whether the log_lik_fn returns log-likelihood (True) or likelihood (False). Default is True.

Returns:
ELPDData

Object with the following attributes:

  • elpd: approximated expected log pointwise predictive density (elpd)

  • se: standard error of the elpd (includes approximation and sampling uncertainty)

  • p: effective number of parameters

  • n_samples: number of samples in the posterior

  • n_data_points: total number of data points (N)

  • warning: True if the estimated shape parameter k of the Pareto distribution is > good_k for any observation in the subsample.

  • elpd_i: DataArray with pointwise elpd values (filled with NaNs for non-subsampled points), only if pointwise=True.

  • pareto_k: DataArray with Pareto shape values for the subsample (filled with NaNs for non-subsampled points), only if pointwise=True.

  • scale: scale of the elpd results (“log”, “negative_log”, or “deviance”).

  • good_k: Threshold for Pareto k warnings.

  • approx_posterior: True if approximate posterior was used.

  • subsampling_se: Standard error estimate from subsampling uncertainty only.

  • subsample_size: Number of observations in the subsample (m).

  • log_p: Log density of the target posterior.

  • log_q: Log density of the proposal posterior.

  • thin: Thinning factor for posterior draws.

  • log_weights: Smoothed log weights.

Warning

When using custom log-likelihood functions with auxiliary data (e.g., measurement errors, covariates, or any observation-specific parameters), that data must be stored in the constant_data group of your DataTree/InferenceData object. During sub-sampling, data from this group is automatically aligned with the subset of observations being evaluated. This ensures that when computing the log-likelihood for observation i, the corresponding auxiliary data is correctly matched.

If auxiliary data is not properly placed in this group, indexing mismatches can occur, leading to incorrect likelihood calculations.

See also

loo

Standard PSIS-LOO-CV.

update_subsample

Update a previously computed sub-sampled LOO-CV.

References

[1]

Vehtari et al. Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC. Statistics and Computing. 27(5) (2017) https://doi.org/10.1007/s11222-016-9696-4 arXiv preprint https://arxiv.org/abs/1507.04544.

[2]

Vehtari et al. Pareto Smoothed Importance Sampling. Journal of Machine Learning Research, 25(72) (2024) https://jmlr.org/papers/v25/19-556.html arXiv preprint https://arxiv.org/abs/1507.02646

[3]

Magnusson, M., Riis Andersen, M., Jonasson, J., & Vehtari, A. Bayesian Leave-One-Out Cross-Validation for Large Data. Proceedings of the 36th International Conference on Machine Learning, PMLR 97:4244–4253 (2019) https://proceedings.mlr.press/v97/magnusson19a.html arXiv preprint https://arxiv.org/abs/1904.10679

Examples

Calculate sub-sampled PSIS-LOO-CV using 4 random observations:

In [1]: from arviz_stats import loo_subsample
   ...: from arviz_base import load_arviz_data
   ...: data = load_arviz_data("centered_eight")
   ...: loo_results = loo_subsample(data, observations=4, var_name="obs", pointwise=True)
   ...: loo_results
   ...: 
Out[1]: 
Computed from 2000 by 4 subsampled log-likelihood
values from 8 total observations.

         Estimate   SE subsampling SE
elpd_loo     -30.8  1.5            0.3
p_loo          0.9

------

Pareto k diagnostic values:
                         Count   Pct.
(-Inf, 0.70]   (good)        4  100.0%
   (0.70, 1]   (bad)         0    0.0%
    (1, Inf)   (very bad)    0    0.0%

Return the pointwise values for the sub-sample:

In [2]: loo_results.elpd_i
Out[2]: 
<xarray.DataArray 'elpd_i' (school: 8)> Size: 64B
array([-4.89190585,         nan,         nan, -3.46496198, -3.4780878 ,
               nan,         nan, -3.95934834])
Coordinates:
  * school   (school) <U16 512B 'Choate' 'Deerfield' ... 'Mt. Hermon'

We can also use custom log-likelihood functions with both lpd and plpd methods. Passing a custom log-likelihood function is required for the plpd method and optional for the lpd method. Note that in this example, the constant_data group already exists in this data object so we can add the sigma data array to it. In other cases, you may need to create the constant_data group to store your auxiliary data:

In [3]: import numpy as np
   ...: import xarray as xr
   ...: from scipy import stats
   ...: 
   ...: sigma = np.array([15.0, 10.0, 16.0, 11.0, 9.0, 11.0, 10.0, 18.0])
   ...: sigma_da = xr.DataArray(sigma,
   ...:                         dims=["school"],
   ...:                         coords={"school": data.observed_data.school.values})
   ...: data['constant_data'] = (
   ...:     data['constant_data'].to_dataset().assign(sigma=sigma_da)
   ...: )
   ...: 
   ...: def log_lik_fn(obs_da, data):
   ...:     theta = data.posterior["theta"]
   ...:     sigma = data.constant_data["sigma"]
   ...:     return stats.norm.logpdf(obs_da, loc=theta, scale=sigma)
   ...: 
   ...: loo_results = loo_subsample(
   ...:     data,
   ...:     observations=4,
   ...:     var_name="obs",
   ...:     method="plpd",
   ...:     log_lik_fn=log_lik_fn,
   ...:     param_names=["theta"],
   ...:     pointwise=True
   ...: )
   ...: loo_results
   ...: 
Out[3]: 
Computed from 2000 by 4 subsampled log-likelihood
values from 8 total observations.

         Estimate   SE subsampling SE
elpd_loo     -30.7  1.4            0.2
p_loo          1.3

------

Pareto k diagnostic values:
                         Count   Pct.
(-Inf, 0.70]   (good)        4  100.0%
   (0.70, 1]   (bad)         0    0.0%
    (1, Inf)   (very bad)    0    0.0%

We can also use the lpd approximation with a custom log-likelihood function, which receives full posterior samples. This should match the results from the default method using the full, pre-computed log-likelihood.

Passing a custom log-likelihood function is optional for the lpd method, but it is recommended in the large data case so that we can compute the log-likelihood on the fly:

In [4]: loo_results_lpd = loo_subsample(
   ...:     data,
   ...:     observations=4,
   ...:     var_name="obs",
   ...:     method="lpd",
   ...:     log_lik_fn=log_lik_fn,
   ...:     pointwise=True
   ...: )
   ...: loo_results_lpd
   ...: 
Out[4]: 
Computed from 2000 by 4 subsampled log-likelihood
values from 8 total observations.

         Estimate   SE subsampling SE
elpd_loo     -30.8  1.5            0.3
p_loo          0.9

------

Pareto k diagnostic values:
                         Count   Pct.
(-Inf, 0.70]   (good)        4  100.0%
   (0.70, 1]   (bad)         0    0.0%
    (1, Inf)   (very bad)    0    0.0%