arviz_stats.update_subsample#
- arviz_stats.update_subsample(loo_orig, data, observations=None, var_name=None, reff=None, log_weights=None, seed=315, method='lpd', log_lik_fn=None, param_names=None, log=True)[source]#
Update a sub-sampled PSIS-LOO-CV object with new observations.
Extends a sub-sampled PSIS-LOO-CV result by adding new observations to the sub-sample without recomputing values for previously sampled observations. This allows for incrementally improving the sub-sampled PSIS-LOO-CV estimate with additional observations.
The sub-sampling method is described in [1].
- Parameters:
- loo_orig
ELPDData
Original PSIS-LOO-CV result created with
loo_subsample
withpointwise=True
.- data
xarray.DataTree
orInferenceData
Input data. It should contain the posterior and the log_likelihood groups.
- observations
int
orndarray
, optional The additional observations to use:
An integer specifying the number of new observations to randomly sub-sample without replacement.
An array of integer indices specifying the exact new observations to use.
If None or 0, returns the original PSIS-LOO-CV result unchanged.
- var_name
str
, optional The name of the variable in log_likelihood groups storing the pointwise log likelihood data to use for loo computation.
- reff
float
, optional Relative MCMC efficiency,
ess / n
i.e. number of effective samples divided by the number of actual samples. Computed from trace by default.- log_weights
xarray.DataArray
orELPDData
, optional Smoothed log weights. Can be either:
A
DataArray
with the same shape as the log likelihood dataAn ELPDData object from a previous
arviz_stats.loo
call.
Defaults to None. If not provided, it will be computed using the PSIS-LOO method.
- seed
int
, optional Seed for random sampling.
- method: str, optional
Method used for approximating the pointwise log predictive density:
lpd
: Use standard log predictive density approximation (default)plpd
: Use point log predictive density approximation which requires alog_lik_fn
.
- log_lik_fn
callable
, optional Function that computes the log-likelihood for observations given posterior parameters. Required when
method="plpd"
or whenmethod="lpd"
and custom likelihood is needed. The function signature islog_lik_fn(observations, datatree)
where observations is aDataArray
of observed data and datatree is aDataTree
object. Formethod="plpd"
, posterior means are computed automatically and passed in the posterior group. Formethod="lpd"
, full posterior samples are passed. All other groups remain unchanged for direct access. Recommended to pass the required parameter names from the posterior group that are necessary for the log-likelihood function.- param_names: list, optional
List of parameter names to extract from the posterior. If None, all parameters are used.
- log: bool, optional
Whether the
log_lik_fn
returns log-likelihood (True) or likelihood (False). Default is True.
- loo_orig
- Returns:
ELPDData
Object with the following attributes:
elpd: updated approximated expected log pointwise predictive density (elpd)
se: standard error of the elpd (includes approximation and sampling uncertainty)
p: effective number of parameters
n_samples: number of samples in the posterior
n_data_points: total number of data points (N)
warning: True if the estimated shape parameter k of the Pareto distribution is >
good_k
for any observation in the subsample.elpd_i:
DataArray
with pointwise elpd values (filled with NaNs for non-subsampled points), only ifpointwise=True
.pareto_k:
DataArray
with Pareto shape values for the subsample (filled with NaNs for non-subsampled points), only ifpointwise=True
.scale: scale of the elpd results (“log”, “negative_log”, or “deviance”).
good_k: Threshold for Pareto k warnings.
approx_posterior: True if approximate posterior was used.
subsampling_se: Standard error estimate from subsampling uncertainty only.
subsample_size: Number of observations in the subsample (original + new).
log_p: Log density of the target posterior.
log_q: Log density of the proposal posterior.
thin: Thinning factor for posterior draws.
log_weights: Smoothed log weights.
Warning
When using custom log-likelihood functions with auxiliary data (e.g., measurement errors, covariates, or any observation-specific parameters), that data must be stored in the
constant_data
group of your DataTree/InferenceData object. During subsampling, data from this group is automatically aligned with the subset of observations being evaluated. This ensures that when computing the log-likelihood for observation i, the corresponding auxiliary data is correctly matched.If auxiliary data is not properly placed in this group, indexing mismatches will occur, leading to incorrect likelihood calculations.
See also
loo
Exact PSIS-LOO cross-validation.
loo_subsample
PSIS-LOO-CV with subsampling.
References
[1]Magnusson, M., Riis Andersen, M., Jonasson, J., & Vehtari, A. Bayesian Leave-One-Out Cross-Validation for Large Data. Proceedings of the 36th International Conference on Machine Learning, PMLR 97:4244–4253 (2019) https://proceedings.mlr.press/v97/magnusson19a.html arXiv preprint https://arxiv.org/abs/1904.10679
Examples
Calculate initial sub-sampled PSIS-LOO-CV using 4 observations, then update with 4 more:
In [1]: from arviz_stats import loo_subsample, update_subsample ...: from arviz_base import load_arviz_data ...: data = load_arviz_data("non_centered_eight") ...: initial_loo = loo_subsample(data, observations=4, var_name="obs", pointwise=True) ...: updated_loo = update_subsample(initial_loo, data, observations=2) ...: updated_loo ...: Out[1]: Computed from 2000 by 6 subsampled log-likelihood values from 8 total observations. Estimate SE subsampling SE elpd_loo -30.8 1.4 0.2 p_loo 1.0 ------ Pareto k diagnostic values: Count Pct. (-Inf, 0.70] (good) 6 100.0% (0.70, 1] (bad) 0 0.0% (1, Inf) (very bad) 0 0.0%