arviz_stats.histogram#
- arviz_stats.histogram(data, dim=None, group='posterior', var_names=None, filter_vars=None, coords=None, bins=None, range=None, weights=None, density=True)[source]#
Compute the batched histogram.
See the EABM chapter on Visualization of Random Variables with ArviZ for more details.
- Parameters:
- dataarray_like,
xarray.DataArray
,xarray.Dataset
,xarray.DataTree
,DataArrayGroupBy
,DatasetGroupBy
, or idata-like Input data. It will have different pre-processing applied to it depending on its type:
array-like: call array layer within
arviz-stats
.xarray object: apply dimension aware function to all relevant subsets
others: passed to
arviz_base.convert_to_dataset
then treated asxarray.Dataset
. This option is discouraged due to needing this conversion which is completely automated and will be needed again in future executions or similar functions.It is recommended to first perform the conversion manually and then call
arviz_stats.histogram
. This allows controlling the conversion step and inspecting its results.
- dimsequence of
hashable
, optional Dimensions to be reduced when computing the histogram. Default
rcParams["data.sample_dims"]
.- group
hashable
, default “posterior” Group on which to compute the histogram
- var_names
str
orlist
ofstr
, optional Names of the variables for which the histogram should be computed.
- filter_vars{
None
, “like”, “regex”}, defaultNone
- coords
dict
, optional Dictionary of dimension/index names to coordinate values defining a subset of the data for which to perform the computation.
- bindarray_like, optional
- rangearray_like, optional
- weightsarray_like, optional
- densitybool, default
True
- **kwargs
any
, optional Forwarded to the array or dataarray interface for histogram.
- dataarray_like,
- Returns:
ndarray
,xarray.DataArray
,xarray.Dataset
,xarray.DataTree
Requested histogram of the provided input. It will have a
hist_dim_{var_name}
dimension and aplot_axis
dimension with coordinates “histogram”, “left_edges” and “right_edges”
See also
arviz_stats.ecdf
,arviz_stats.kde
,arviz_stats.qds
Alternative visual summaries for marginal distributions
arviz_plots.plot_dist
Examples
Calculate the histogram of a Normal random variable:
In [1]: import arviz_stats as azs ...: import numpy as np ...: data = np.random.default_rng().normal(size=2000) ...: azs.histogram(data) ...: Out[1]: (array([0.01210468, 0.03550706, 0.11136304, 0.2671099 , 0.36233336, 0.3873497 , 0.2558122 , 0.13637937, 0.03308612, 0.0112977 , 0.00080698, 0.00080698]), array([-3.10717258, -2.48757742, -1.86798225, -1.24838709, -0.62879192, -0.00919676, 0.61039841, 1.22999357, 1.84958873, 2.4691839 , 3.08877906, 3.70837423, 4.32796939]))
Calculate the histogram for specific variables:
In [2]: import arviz_base as azb ...: dt = azb.load_arviz_data("centered_eight") ...: azs.histogram(dt, var_names=["mu", "theta"]) ...: Out[2]: <xarray.DataTree 'posterior'> Group: /posterior Dimensions: (plot_axis: 3, hist_dim_mu: 12, school: 8, hist_dim_theta: 12) Coordinates: * plot_axis (plot_axis) <U11 132B 'histogram' 'left_edges' 'right_edges' * school (school) <U16 512B 'Choate' 'Deerfield' ... 'Mt. Hermon' Dimensions without coordinates: hist_dim_mu, hist_dim_theta Data variables: mu (plot_axis, hist_dim_mu) float64 288B 0.001653 0.005903 ... 17.9 theta (plot_axis, school, hist_dim_theta) float64 2kB 0.0005864 ... ...
Calculate the histogram also over the school dimension (for variables where present):
In [3]: azs.histogram(dt, dim=["chain", "draw", "school"]) Out[3]: <xarray.DataTree 'posterior'> Group: /posterior Dimensions: (plot_axis: 3, hist_dim_mu: 12, hist_dim_theta: 15, hist_dim_tau: 12) Coordinates: * plot_axis (plot_axis) <U11 132B 'histogram' 'left_edges' 'right_edges' Dimensions without coordinates: hist_dim_mu, hist_dim_theta, hist_dim_tau Data variables: mu (plot_axis, hist_dim_mu) float64 288B 0.001653 0.005903 ... 17.9 theta (plot_axis, hist_dim_theta) float64 360B 7.385e-05 ... 46.46 tau (plot_axis, hist_dim_tau) float64 288B 0.2336 0.1504 ... 20.49