Source code for arviz_stats.loo.reloo

"""Compute exact Leave-One-Out cross validation refitting for problematic observations."""

from copy import deepcopy

import numpy as np
import xarray as xr
from arviz_base import rcParams
from xarray_einstats.stats import logsumexp

from arviz_stats.loo.helper_loo import _prepare_loo_inputs
from arviz_stats.loo.loo import loo
from arviz_stats.loo.wrapper import SamplingWrapper
from arviz_stats.utils import ELPDData

__all__ = ["reloo"]


[docs] def reloo( wrapper, loo_orig=None, var_name=None, log_weights=None, k_threshold=-np.inf, pointwise=None, ): r"""Recalculate exact Leave-One-Out cross validation refitting where the approximation fails. :func:`arviz_stats.loo` estimates the values of Leave-One-Out (LOO) cross validation using Pareto Smoothed Importance Sampling (PSIS) to approximate its value. PSIS works well when the posterior and the posterior_i (excluding observation i from the data used to fit) are similar. In some cases, there are highly influential observations for which PSIS cannot approximate the LOO-CV, and a warning of a large Pareto shape is sent by ArviZ. These cases typically have a handful of bad or very bad Pareto shapes, and a majority of good or ok shapes. Therefore, this may not indicate that the model is not robust enough nor that these observations are inherently bad, only that PSIS cannot approximate LOO-CV correctly. Thus, we can use PSIS for all observations where the Pareto shape is below a threshold and refit the model to perform exact cross validation for the handful of observations where PSIS cannot be used. This approach allows us to properly approximate LOO-CV with only a handful of refits, which in most cases is still much less computationally expensive than exact LOO-CV, which needs one refit per observation. Parameters ---------- wrapper : SamplingWrapper An instance of a SamplingWrapper subclass that implements the necessary methods for model refitting. This wrapper allows ``reloo`` to work with any modeling framework. loo_orig : ELPDData, optional Existing LOO results with pointwise data. If None, will compute PSIS-LOO-CV first using the data from ``wrapper``. var_name : str, optional The name of the variable in log_likelihood groups storing the pointwise log likelihood data to use for loo computation. Defaults to None, which will use all log likelihood data. log_weights : DataArray or ELPDData, optional Smoothed log weights. Can be either: - A DataArray with the same shape as the log likelihood data - An ELPDData object from a previous :func:`arviz_stats.loo` call. Defaults to None. If not provided, it will be computed using the PSIS-LOO method. k_threshold : float, optional Pareto shape threshold. Observations with k values above this threshold will trigger a refit. Defaults to :math:`\min(1 - 1/\log_{10}(S), 0.7)`, where S is the number of samples. pointwise : bool, optional If True, return pointwise LOO data. Defaults to ``rcParams["stats.ic_pointwise"]``. Returns ------- ELPDData Updated LOO results where high Pareto k observations have been replaced with exact LOO-CV values from refitting. Notes ----- It is strongly recommended to first compute :func:`arviz_stats.loo` on the inference results to confirm that the number of values above the threshold is small enough. Otherwise, prohibitive computation time may be needed to perform all required refits. As an extreme case, artificially assigning all ``pareto_k`` values to something larger than the threshold would make ``reloo`` perform the whole exact LOO-CV. This is not generally recommended nor intended, however, if needed, this function can be used to achieve the result. The term `exact cross-validation` is used here to refer to the process of refitting the model for each observation, which is also commonly called `brute-force cross-validation`. While this eliminates the PSIS approximation, other approximations remain in the process, such as those inherent in the fitting procedure itself and the use of cross-validation as a proxy for expected log predictive density (ELPD). Warnings -------- Refitting can be computationally expensive. Check the number of high Pareto k values before using ``reloo`` to ensure the computation time is acceptable. See Also -------- loo : Pareto smoothed importance sampling LOO-CV loo_moment_match : Moment matching for problematic observations References ---------- .. [1] Vehtari et al. *Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC*. Statistics and Computing. 27(5) (2017) https://doi.org/10.1007/s11222-016-9696-4 arXiv preprint https://arxiv.org/abs/1507.04544. .. [2] Vehtari et al. *Pareto Smoothed Importance Sampling*. Journal of Machine Learning Research, 25(72) (2024) https://jmlr.org/papers/v25/19-556.html arXiv preprint https://arxiv.org/abs/1507.02646 """ if not isinstance(wrapper, SamplingWrapper): raise TypeError( "wrapper must be an instance of SamplingWrapper or a subclass. " "See the SamplingWrapper documentation for implementation details." ) required_methods = ["sel_observations", "sample", "get_inference_data", "log_likelihood__i"] not_implemented = wrapper.check_implemented_methods(required_methods) if not_implemented: raise TypeError( "Passed wrapper instance does not implement all methods required for reloo " f"to work. Check the documentation of SamplingWrapper. {not_implemented} must be " "implemented and were not found." ) pointwise = rcParams["stats.ic_pointwise"] if pointwise is None else pointwise if loo_orig is None: pareto_k = None if isinstance(log_weights, ELPDData): if log_weights.log_weights is None: raise ValueError("ELPDData object does not contain log_weights") pareto_k = log_weights.pareto_k log_weights = log_weights.log_weights # Dataset case comes from loo_subsample if isinstance(log_weights, xr.Dataset): if var_name and var_name in log_weights: log_weights = log_weights[var_name] else: log_weights = log_weights[list(log_weights.data_vars)[0]] loo_orig = loo( wrapper.idata_orig, var_name=var_name, pointwise=True, log_weights=log_weights, pareto_k=pareto_k, ) if not isinstance(loo_orig, ELPDData): raise TypeError("loo_orig must be an ELPDData object.") if loo_orig.pareto_k is None or loo_orig.elpd_i is None: raise ValueError( "reloo requires pointwise LOO results with Pareto k values. " "Please compute the initial LOO with pointwise=True." ) sample_dims = ["chain", "draw"] loo_refitted = deepcopy(loo_orig) loo_inputs = _prepare_loo_inputs(wrapper.idata_orig, var_name) obs_dims = loo_inputs.obs_dims n_data_points = loo_inputs.n_data_points n_samples = loo_inputs.n_samples log_likelihood = loo_inputs.log_likelihood if k_threshold is None: k_threshold = min(1 - 1 / np.log10(n_samples), 0.7) pareto_k_stacked = loo_orig.pareto_k.stack(__obs__=obs_dims).transpose("__obs__") bad_k_mask = pareto_k_stacked > k_threshold bad_obs_flat_indices = np.where(bad_k_mask.values)[0] if len(bad_obs_flat_indices) == 0: if not pointwise: loo_refitted.elpd_i = None loo_refitted.pareto_k = None return loo_refitted if not hasattr(loo_refitted, "p_loo_i") or loo_refitted.p_loo_i is None: loo_refitted.p_loo_i = xr.full_like(loo_refitted.elpd_i, np.nan) lpd_i = logsumexp(log_likelihood, b=1 / n_samples, dims=sample_dims) loo_refitted.p_loo_i = lpd_i - loo_refitted.elpd_i if len(obs_dims) == 1: bad_obs_indices = bad_obs_flat_indices else: obs_shape = [loo_orig.pareto_k.sizes[dim] for dim in obs_dims] bad_obs_indices = np.array(np.unravel_index(bad_obs_flat_indices, obs_shape)).T for i, _ in enumerate(bad_obs_flat_indices): if len(obs_dims) == 1: obs_idx = bad_obs_indices[i] coord_value = loo_orig.pareto_k.coords[obs_dims[0]].values[obs_idx] obs_idx_dict = {obs_dims[0]: coord_value} sel_idx = obs_idx else: obs_idx = bad_obs_indices[i] obs_idx_dict = {} for j, dim in enumerate(obs_dims): coord_value = loo_orig.pareto_k.coords[dim].values[obs_idx[j]] obs_idx_dict[dim] = coord_value sel_idx = obs_idx_dict log_lik_i = log_likelihood.sel(obs_idx_dict) hat_lpd_i = logsumexp(log_lik_i, dims=sample_dims, b=1 / n_samples).item() new_obs, excluded_obs = wrapper.sel_observations(sel_idx) fit = wrapper.sample(new_obs) idata_idx = wrapper.get_inference_data(fit) log_lik_idx = wrapper.log_likelihood__i(excluded_obs, idata_idx) elpd_loo_i = logsumexp(log_lik_idx, dims=sample_dims, b=1 / log_lik_idx.size).item() loo_refitted.elpd_i.loc[obs_idx_dict] = elpd_loo_i loo_refitted.pareto_k.loc[obs_idx_dict] = 0.0 loo_refitted.p_loo_i.loc[obs_idx_dict] = hat_lpd_i - elpd_loo_i loo_refitted.elpd = np.sum(loo_refitted.elpd_i.values) loo_refitted.se = np.sqrt(n_data_points * np.var(loo_refitted.elpd_i.values)) loo_refitted.p = np.sum(loo_refitted.p_loo_i.values) loo_refitted.warning = np.any(loo_refitted.pareto_k.values > loo_refitted.good_k) if not pointwise: loo_refitted.elpd_i = None loo_refitted.pareto_k = None loo_refitted.p_loo_i = None if hasattr(loo_orig, "log_weights") and loo_orig.log_weights is not None: loo_refitted.log_weights = loo_orig.log_weights else: if hasattr(loo_orig, "log_weights") and loo_orig.log_weights is not None: loo_refitted.log_weights = loo_orig.log_weights.copy() for i, obs_idx in enumerate(bad_obs_flat_indices): if len(obs_dims) == 1: loo_refitted.log_weights[bad_obs_indices[i]] = np.nan else: obs_idx_tuple = tuple(bad_obs_indices[i]) loo_refitted.log_weights[obs_idx_tuple] = np.nan return loo_refitted